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I A SIMPLE 

by R. 

a 

0 

Many invest igators  

(Nusselt type)  equation 

EQUATION FOR CORRELATING TURBULENT 
I 

HEAT TRANSFER TO A GAS 

J. Simoneau and R. C. Hendricks 
Lewis Research Center 

ABSTRACT $5248 
have employed t h e  conventional Dittus-Boelt e r  

modified by a wall t o  bulk temperature r a t i o  t o  

cor re la te  turbulent heat-transfer data f o r  gases flowing through heated 

tubes. It has been found t h a t  t h e  reported convective data f o r  hydrogen, 

helium, air, and carbon dioxide can be correlated t o  t h e  same accuracy 

as t h e  Nusselt type correlat ions by use of 

0.8 d-0.2 
= K(PV)b 

where K i s  a constant f o r  any given gas. 

t h e  equation v 
This equation suggests that 

f o r  t h e  four  gases investigated, a convective cor re la t ion  f o r  a given 

gas need not include the temperature dependence of t h e  thermal and t rans-  

port  propert ies .  

Based on t h e  p lo t s  of these reported data, t h e  values of K are: 

f o r  hydrogen, 0.0480, f o r  helium, 0,0200, f o r  air, 0,00420, and f o r  car- 

bon dioxide, 0.00385. 

These da ta  covered t h e  conditions of f i l m  temperature from 500' t o  

3400' R with w a l l  t o  bulk temperature r a t i o s  from 1.1 t o  9.9. No appre- 

c iab le  d issoc ia t ion  was reported i n  t h e  data.  

t u r e  w a s  150' above t h e  c r i t i c a l  temperature. 

ranged from 5000 t o  1,500,000 with heat f luxes up t o  3 Btu per second 

per square inch. 

The minimum bulk tempera- 

The bulk Reynolds number 

Tube diameters varied from 1/8 t o  1 / 2  inch. 
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1 INTRODUCTION 

The quest ion of how t emperature-dependent thermal and t ransport  

properties i n f  h e n c e  turbulent heat - transf e r  correlat ions has been in- 

vest igated extensively i n  recent years ( r e f s .  1 t o  8) .  Much of t h i s  

work has been directed toward determining t h e  temperature at which t o  

evaluate these properties. 

similar t o t h a t  experienced i n  rocket cooling channels, w i l l  cause a 

correspondingly large change i n  thermal propert ies  across t h e  boundary 

layer. For t h i s  reason invest igators  have f e l t  t h a t  t h e  technique of 

accounting f o r  these properties should have a marked influence on t h e  

heat - transfer coefficient s . 

A large f l u i d  t o  wall temperature gradient, 

Bartz (ref. 9), Wolf ( re f .  6 ) ,  andothers have suggested t h a t  t u r -  

bulent heat t ransfer  is  dominated by t h e  mass flow ra te .  In  refer- 

ence 9, t h e  r e l a t ion  suggested is 

h a ( P V g  (1) 

(Symbols are defined i n  t h e  appendix. ) 

i n  reference 6 i n  a plot  of 

of t h a t  reference. The nature of t h i s  proportionali ty i s  explored 

herein. The approach w i l l  depart from t h e  conventional approach of 

assunring that t h i s  proportionali ty is  best  expressed i n  terms of t h e  

standard Nusselt type equation. 

t h a t  i n  correlations based only on measurements of heat flux, mass flow 

rate, bulk temperature, tube diameter, and temperature difference, it 

may not be necessary t o  account f o r  thermal- and transport-property 

var ia t ions  across t h e  boundary layer. To determine t h i s ,  t h e  measured 

A similar approach i s  presented 

h as a function of (pv), i n  f igure  37 

The dominance of mass ve loc i ty  suggests 
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parametric data of some recent heated tube experiments (refs. 1 t o  8)  

were reexamined i n  t h i s  report. 
4' 

References 1 t o  8 represent a ser ies  of heated tpbe investigations 

of turbulent heat t r ans fe r  t o  gases a t  moderate t o  large vaJues of AT. 

In  t h e  regions covered by these experiments the conventional Dittus- 

Boelter (Nusselt type)  equation, modified by t h e  wall t o  bulk tempera- 

ture rat io ,  has successfully correlated the data. I n  many cases t h e  

properties were elevated at f i l m  temperature; however, some invest i- 

gators reported correlat ions based on bulk tanperatures. The question 

of which temperature t o  Use t o  evaluate t h e  properties has not been 

f u l l y  resolved. This correlation usually takes on one of t he  two 

following f oms : 

= C Re:'8Fr:=4(Tf/Tb) -c 
For t h e  investigations referenced, a = -0.50 t o  -0,55 and b = -0.80, 

The effectiveness of a correlat ion based on t h e  measured parameters alone 

w i l l  be determined by cmparing it w i t h  the reported correlat ions of the 

same data using equations (2) and (3). 

The data considered f o r  analysis from the references 1 t o  8 in- 

cluded a l l  t h a t  used by the  individual authors f o r  t h e i r  correlat ions 

except t h e  data of references 2, 7, and 8. All the runs from refer-  

ence 2 were used, but only one loca l  s t a t ion  was analyzed. The data of 

reference 7 were omitted because they  yielded high heat-transfer coef- 
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f i c i en t s .  

report, reference 7, yielded high values of h and would not be included 

In reference 8 t h e  authors reported that t h e  data  of t h e  e a r l i e r  
m 

i n  t h e i r  correlations. The data used f o r  correlat ion i n  reference 8 was 

not  presented i n  t h a t  report. References 2, 3, and 5 also did not present 

t h e  measured data, therefore, it was obtained by d i rec t  communication with 

the authors. Only t h e  gas data of reference 4 was used f o r  correlation. 

The data analyzed covered t h e  overa l l  conditions of f i l m  temperature from 

500° t o  3400' R with w a l l  t o  bulk temperature r a t i o s  from 1.1 t o  9.9. 

No appreciable dissociation was reported in  t h e  data. The minimum bulk 

temperature was 150' above t h e  c r i t i c a l  temperature. The bulk Reynolds 

number ranged from 5000 t o  1,500,000 with heat f luxes up t o  3 Btu per 

second per sq in.  

detai led l is t  of the  data domains i s  given in  t a b l e  I. 

Tube diameters varied from 1/8 t o  1/2 inch. A more 

CORREZATION TECHNIQUE 

I n  the  heated tube experiments, such as those of references 1 t o  6 

heat f l ux  mass flow r a t e  &, bulk temperature Tb, and tube diam- 

eter d, are the  control parameters. The only other measured parameter, 

wall temperature Tw or  &I?, i s  dependent on t h e  control  parameters. 

If a correlation is  t o  be based on these measured parameters, it then can 

be expressed i n  t h e  form , 

AT =I f(%&Tb,d) (4) 

Pressure i s  not included i n  equation (4) because the re  were no apparent 

pressure-level e f fec ts  i n  t h e  analysis presented herein. The hydrogen 

data of reference 1, a re  plot ted i n  f igure  1 i n  order t o  evaluate equa- 

t i o n  (4). Figure 1 is a plot of t h e  re la t ion  
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6 

c = h 0: (:) * o*8  d-0.2 
m ( 5  1 

A dependence of h on Tw/Tb is evident i n  f igure  1 f o r  TJTb > 3 

and a l so  has been observed and reported i n  t h e  references 1 t o  6. Data 

from each reference were plot ted separately i n  t h e  same manner as indi- 

cated i n  f igu re  1 t o  determine the  dependence of h on t h e  w a l l  t o  bulk 

temperature ra t io .  A plot of h against Tw/Tb at a given value of 

for references 1 t o  6 is shown i n  f igure  2. The heat- 8 d-O. 2 

t r ans fe r  coefficient 

a s  approximately -0.5. 

slope of f igure  2 could be e f f ec t s  of t h e  tube length t o  diameter r a t i o  

(L/D). It was  decided t o  leave t h e  L/D correction out of t h i s  analysis 

for simplicity. 

h var ies  a s  (Tw/Tb)a, where a can be selected 

One explanation f o r  t h e  spread and varying 

In  f igure 3, t h e  abscissa of f i g u r e  1 was modified by multiplying 

the r igh t  s ide  of equation (5) by 4-m. 
tween -0.4 and -0.6 were investigated and appeared t o  make no s igni f i -  

cant change i n  t h e  spread of t h e  data. 

references 1 t o  6 p lo t ted  w i t h  t h i s  modification by the wall t o  bulk 

temperature r a t i o  included. Some of t he  invest igators  of references 1 

t o  6 reported average heat-transfer coeff ic ients  and other reported 

loca l  values. 

ure  3. 

yields  t h e  equation 

Various values of a be- 

Figure 3 represents data from 

No e f fo r t  was made t o  dis t inguish between them i n  f ig-  

There were no apparent differences. Inspection of f igu re  3 
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where K appears t o  be a constant unique t o  each gas. The values of K + 

f o r  each of t h e  gases investigated a r e  l i s t e d  i n  t a b l e  11. 

were obtained from t h e  l i n e s  drawn through t h e  data of f igure  3. 

t i o n  (6 )  correlates  a l l  t h e  data within *12 percent as shown i n  t a b l e  11, 

column 4. 

.A 

These values 

Equa- 

COMPARISON TO NUSSELT m P E  CORRELATION 

Accuracy 

An indication of t h e  comparative correlat ion accuracies of equa- 

t ions  (2)  and ( 6 )  may be obtained by inspection of t a b l e  11. 

represents t h e  deviation of t h e  data a s  reported by t h e  authors of 

references 1 t o  6. 

cor re la te  t h e i r  dataj  therefore, t h e  deviations i n  column 1 represent 

t h e  accuracy with which a Nusselt type equation, such as equation (2), 

w i l l  cor re la te  t h e  reported data. 

with which equation ( 6 )  w i l l  cor re la te  the same data, t h e  data of f ig-  

ure 3. Inspection of t h e  hydrogen data, f o r  example, indicates  a 

deviation of *11 percent using equation (6), which compares very favor- 

ably with an average of *lo percent using t h e  Nmriiblt correlation. In- 

spection of f igure  3 shows that t h e  spread of t h e  data, column 2 of 

t ab le  11, could be decreased and t h e  data  would be b e t t e r  f i t  by using 

a slope other than m = 0.8. This has been observed by others, and 

m = 0.8 

pared with t h e  reported Nusselt correlations.  

Column l 

These authors used e i the r  equation ( 2 )  o r  (3) t o  

Column 4 represents t h e  accuracy 

i s  retained f o r  convention and so that equation ( 6 )  can be com- 
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e 

a Relat ion With Nusselt k u a t  ion 
6 

The terms i n  equation ( 2 )  can be regrouped i n  t h e  following manner: 

The subscript  x on t h e  property grouping indicates  equations ( 2 )  

and ( 7 )  can represent correlat ions based on e i the r  bulk, film, or  wall 

temperature properties.  

s t an t  C, or t h e  exponent a, or b o t h  w i l l  be d i f fe ren t  f o r  d i f f e ren t  

reference conditions (ref .  l), When t h e  Nusselt cor re la t ion  (eq. (2)) ,  

is wr i t ten  i n  t h e  manner of equation ( 7 ) ,  it is  of t h e  same form as 

equation (6 ) .  

on t h e  same measured parameters. 

cor re la te  t h e  data  t o  within t h e  same accuracy, a comparison of t h e  two 

equations can be made t o  y ie ld  t h e  relat ion 

The form w i l l  remain t h e  same, but t h e  con- 

This should be expected s ince both correlat ions are based 

Inasmuch a s  equations (6 )  and ( 7 )  w i l l  

K = Ccpx = const 

where 

KO. 6,O. 4 
P 
4 c p =  (9)  

Figure 4 indicates  that, with t h e  exception of para-hydrogen, f o r  perfect  

and near perfect gases, rp is  a monotonically increasing function of tem- 

perature.  Since f igu re  3 indicates  that K is  a constant f o r  each gas, 

equation (8)  requires t h a t  C, t h e  conventional Dittus-Boelter coeff i- 

cient ,  be a function of temperature that  decreases i n  inverse proportion 

t o  cp. Figure 5 is a plot  of C against T f o r  a l l  t h e  hydrogen da ta  

of reference 1. These C values were computed f o r  bulk, film, and wall 
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reference temperatures f o r  each run using equation ( 7 )  with a value of 

a = -0.5. The dashed l i n e  represents cp against  T f o r  normal hydro- 
.. 

gen using the property data  equations presented i n  reference 1. The 

so l id  l i n e  represents C against T based on equation (8), spec i f i -  

cally, 

The average deviation of t h e  data about t h i s  curve is  +14 t o  -11 percent. 

This average deviation f o r  t h e  C value of each run about the  curve of 

equation (10) is a l s o  t h e  average deviation about K = 0.0480 f o r  t h e  

data  of reference 1. It i s  consistent w i t h  that  reported i n  column 3, 

of table  I1 f o r  reference 1. 

Inspection of column 3 of t a b l e  I1 indicates  that the  data  of each 

investigator shown i n  f igure  3 do not f a l l  symmetrically about t he  

l i n e s  described by equation (6 ) .  This nonsymmetry was inspected f o r  

f i lm o r  bulk temperature effect ,  which might suggest K is a l s o  a func- 

t i o n  of temperature. No such ef fec t  was apparent i n  f igure  3. The data  

seemed t o  f a l l  i n  a random pat te rn  about t h e  mean l i n e  without regard 

t o  temperature. Figure 5, however, suggests a s l i g h t  bulk-t emperature 

e f fec t  on K. The temperature e f fec t  does not appear t o  be strong; 

however, K seems t o  be an increasing function w i t h  temperature. From 

t h e  available data, it is  not possible t o  predict  a more accurate K 

as a function of temperature than one ge t s  by assuming it constant. 

An inspection of some of t h e  nea r -c r i t i ca l  data  of reference 4 a l s o  in-  

d ica tes  that K decreases s l i g h t l y  as t h e  bulk temperature approaches 

t h e  c r i t i c a l  value. 

t 
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G a s  

H e l i u m  
A i r  

Carbon 
dioxide 

Extrapolation t o  Other Gases 

Experi- Calculated a t  800' F Calculated at 1000° F 
mental, reference temperature; reference temperature; 

f i g .  3 from eq. (11) from eq. (11) 
Pr opor - Propor- Error Propor- Error, 

t iona l i t y  t i o n a l i t y  percent t iona l i t y  percent 
constant, const ant, const ant ,  

K K K 

from C(T) = 0.0223 C(T) = 0,0213 

0.0200 0,0196 -2.0 0.0191 -4.5 
.00420 e00381 -9.3 -00383 -8.8 

.00385 .00348 -9.6 -00381 -1.0 

Another question of concern i s  how w e l l  can one go from one gas t o  

another or extrapolate t o  unknown gases using equation ( 6 )  compared with 

t h e  Nusselt equation. Assume tha t ,  knowing K f o r  hydrogen t o  be 
9 

0.0480, one wishes t o  f ind  t h e  K values for helium, air, and carbon 

dioxide. 

can be selected from f igure  4. This point should be su f f i c i en t ly  re- 

moved from t h e  c r i t i c a l  temperature t o  ensure t h a t  a l l  t h e  gases a r e  

behaving i n  t h e  same manner, t ha t  is, l i k e  perfect gases. For these  

gases, a select ion of 800' - 1000° F would seem reasonable. 

equation (8)  a Dittus-Boelter type coeff ic ient  can be evaluated f o r  

normal hydrogen at some reference temperature i n  t h e  following manner: 

A reference temperature at which t o  perform t h e  calculat ions 

From 

0 

KN-H2 = 0.0213 clOOOo R = rp 
N-H2,10000 R 

Applying equations (8 )  and (11) and t h e  data  of f igure  4 yields  t h e  
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Thus it can be seen that, f o r  t h e  gases investigated, it i s  possible t o  + 

estimate with considerable accuracy t h e  
.. 

K of  a gas based on t h e  ex- 

perimentally known K of another gas. These r e s u l t s  tend t o  support a 

similar extrapolation t o  gases f o r  which K is  not experimentally known. 

A t  present, however, t h i s  extrapolation must be l imi t ed  t o  gases whose 

c, 

curves of cp against  T are of t h e  same general  form as those of 

f igu re  4. 

CONCLUSIONS 

For t h e  gases examined, and probably f o r  any near-perfect gas, 

equation ( 6 )  w i t h  a spec i f ic  constant K f o r  each gas w i l l  co r r e l a t e  

turbulent heat-transf e r  data  successful ly  within cur ren t ly  acceptable 

accuracy l imits .  Equation ( 6 )  is  very simple i n  form and should be 

par t icu lar ly  a t t r a c t i v e  i n  design-type parametric studies.  

It i s  not t o  be inferred from t h i s  study that the  propert ies  do 

not influence t h e  ac tua l  heat- t ransfer  mechanism. All that  is  being 

pointed out i s  tha t  property var ia t ions  of a given gas do not influence 

a data  correlat ion based on measurements of heat flux, mass flow rate ,  

bulk temperature, tube diameter, and temperature difference.  More 

sophisticated experiments a r e  needed t o  assess t h e  influence of property 

var ia t ions  on heat t r ans fe r  over a range of temperatures. These experi- 

ments would have t o  be designed t o  assess t h e  r e l a t ion  t h a t  t h e  basic  

f h i d - f  low and heat -t ransf er mechanism have with t h e  thermal and t r a n s  - 
port properties.  Apparently heat flux, mass flow rate, and temperature 

difference r e f l e c t  these  r e l a t ions  such that they  can be correlated 

effect ively independent of properties.  To determine why t h i s  i s  so  would 

seem t o  be a good experimental and t h e o r e t i c a l  s t a r t i n g  point.  
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APPENDIX - SYMBOLS 1 - 
A 

0 

C 

cP 

d 

h 

K 

k 

m 

Nu 

P r  

9 

R e  

Remod 

T 

PV 

I-r 

Cp 
0 

w 

2 area, f t  

exponents 

Dittus-Boelt er coeff ic ient ,  dimensionless 

spec i f ic  heat, Btu/(lbmaSs) (OR) 

tube diameter, f t  

heat- t ransfer  coeff ic ient ,  Btu / (hr ) ( f t  2 0  ) (  R ) / ( f t )  

proport ional i ty  constant, R U / ( ~ R )  (1b::d (hrog2) (f'tow2) 

thermal conductivity, Btu/(hr) ( f t 2 )  ( O R )  ( f t )  

r a t i o  of tube length t o  tube diameter, dimensionless 

exponent 

Nusselt number, hd/k, dimensionless 

Prandtl  number, pc /k, dimensionless 
P 

heat flux, Btu/ ( h r )  ( rt2) 

Reynolds number, ( pV)bd/px, dimensionless 

modified Reynolds number, -, dimensionless 

temperature, OR 

pfvba 
I-rf 

temperature difference, T~ - Tb, OR 

mass velocity,  lbmass/(hr) (ft2) 

viscosity,  lbmass/(f't) (hr) 

property grouping, ko' 6ci*4/p0* 4, Btu/('R) (lb:&) (hroe2)  ( f too2)  

mass flow rate, lbmass/hr 

Subscripts: 

b bulk temperature 

f f i lm temperature 
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w w a l l  temperature 

x reference temperature 
. 
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TABLE I. - DAI 

Gas 

Hydrogen) 
helium 

Hydrogen, 
helium 

HydrogeG 
helium 

Hydrogen 

A i r  

A i r ,  
carbon 
dioxi& 

N i t r o g q  
helium, 
carbon 
dioxide 
d 

Fi lm tern- 
perat ure, 

OR 

500 - 135( 

800 - 340( 

500 - 150( 

570 - 900 

580 - 170( 
900 - 130( 

350 - 200( 

USED FRO 

Wall t o  
bulk tern- 
perat ure, 

r a t  io, 

Tw/Tb 

1.5 - 9.9 

1.4 - 6.6 

1.2 - 3.0 

1.1 - 1.7 
1.1 - 2.5 

1.6 - 2.8 

1.2 - 1 .6  

- 15 - 

INVESTIGATIONS OF REPERENCES 1 TO 8 

Pres sure, 
lb/sq i n  gage 

30 - 1350 

40 - 100 
b200 - 1000 

215 - 640 

15 - 65 

100 

up t o  1000 

-- 
Exponents 

b 

l i t t u s  - 
3oelt er 
:oef f i- 
:ient, 

C 

'0.025 

.021 

.021 

----- 
'. 023 

d. 037 

'. 036 

-- 
iefer-  
?nc es 

aMore than one value of a and C was used i n  ref .  1. 
bInformation received i n  a p r iva t e  communication. 
'Wan temperature cor re la t ion  was used instead of f i lm correlat ion.  
dWall temperature cor re la t ion  and L/D correct  ion were used. 

eTube length t o  diameter r a t i o  correction was used. 

1 

2 

3 

4 

5 

6 

778 
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TABLE 11. - COMPARISON OF EQUATION (6)  WITH NUSSELT CORRELATION 

Hydrogen F 
Helium 

1 A i r  

Carbon 1 dioxide 

I Nitrogen 

Proport ion- 
. a l i t y  

constant, 
K 

0.0480 

0.0200 

~ ~~ 

0.00420 

0.00385 

( e )  

Average Deviation, 1 Refer- 
percent 

1- 2 3 
( a )  (b) (4 . 

f*5 ' 5 7  +5 t o  -9 

@ $12 +13 t o  -11 
21c) &I2  +18 t o  -6 

--- +15 +9 t o  -20 

+14 
+8 

+12 t o  -5 
+17 t o  -8 
' + 7  t o  -12 

( e )  

+16 t o  -12 
+8 t o  -8 

f+7 

+l? 

+8 t o  -9 

( e )  

I ence 

1 

3 

+12 t o  
-10 

( e )  1 i , 8  

&Deviation as reported i n  t h e  references based on eq. (2 )  

bSpread of t h e  data of each reference plot ted as  i n  f i g .  3. 
o r  (3). 

Deviation f o r  t h e  data of each reference from t h e  l i n e  

dDeviation f o r  all t h e  data of a given gas from t h e  l i n e  

eInsufficient data published t o  determine K or t o  make 

C 

described by eq. ( 6 ) .  

described by eq. (6) .  

deviation analysis. 
res t  i n  about t h e  same mannerj however, they seem t o  in- 
dicate higher K values than other reported data. (See 

These data  appear t o  support t h e  

~ R O D U C T I O N )  . 
f E s t  imat ed from published curves. 
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EFFECT OF WALL- TO-BULK TEMPERATURE RATIO 
ON HEAT-TRANSFER COEFFICIENT 
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